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A physiologically based model of the mechanisms that control the human sleep-wake cycle is formulated in
terms of an equivalent nonconservative mechanical potential. The potential is analytically simplified and
reduced to a quartic two-well potential, matching the bifurcation structure of the original model. This yields a
dynamics-based model that is analytically simpler and has fewer parameters than the original model, allowing
easier fitting to experimental data. This model is first demonstrated to semiquantitatively match the dynamics
of the physiologically based model from which it is derived, and is then fitted directly to a set of experimen-
tally derived criteria. These criteria place rigorous constraints on the parameter values, and within these
constraints the model is shown to reproduce normal sleep-wake dynamics and recovery from sleep deprivation.
Furthermore, this approach enables insights into the dynamics by direct analogies to phenomena in well studied
mechanical systems. These include the relation between friction in the mechanical system and the timecourse
of neurotransmitter action, and the possible relation between stochastic resonance and napping behavior. The
model derived here also serves as a platform for future investigations of sleep-wake phenomena from a
dynamical perspective.
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I. INTRODUCTION

The dynamics of the human sleep-wake cycle are under-
stood to be the result of drives to a system of brainstem
nuclei that control arousal �1–3�. Advances in knowledge of
the physiology have revealed enough of the underlying
mechanisms to enable several physiologically based models
of the system to be developed �4–6�. These models are able
to relate dynamics directly to physiology, including the un-
derlying causes of certain pathologies �4�. However, as more
details of the physiology are included, the models become
less analytically tractable and more difficult to fit to experi-
mental data. Furthermore, the physiological mechanisms un-
derlying certain phenomena, such as the ultradian rhythm
between rapid eye movement �REM� and non-REM �NREM�
sleep �7�, are not yet properly understood. Only the model of
Phillips and Robinson, which purposely left aside the ques-
tion of what causes the ultradian rhythm, has had all its pa-
rameters rigorously constrained �4,8�. Hence, there is a need
for dynamics-based models, which are ultimately still com-
patible with the physiological interactions underpinning
them, but analytically simpler and applicable to phenomena
for which the physiology is as yet still unclear.

At the core of human sleep-wake dynamics is the sleep-
wake switch �1�. Mutual inhibition between wake-promoting
and sleep-promoting nuclei gives rise to a “flip-flop” switch,
with each group indirectly reinforcing its own firing. Only
one group can be active at a time, with rapid transitions
between states �1,3�. Transitions are caused by changes in
drives to the system, including the approximately 24 h peri-
odic circadian drive �9�, and the homoestatic drive to sleep,

which increases during wake and decreases during sleep
�10�. However, our understanding of the physiology is still
incomplete, and ultimately, modeling of the systems in-
volved from a dynamical perspective may help to infer the
underlying physiology.

In this paper we reframe the physiologically based model
of Phillips and Robinson �4� as a mechanical system by con-
structing an equivalent nonconservative potential �11�, pro-
viding a starting point for dynamics-based modeling. This
potential is then simplified analytically, and reduced to a
quartic two-well potential with the same bifurcation structure
as the original model. This approach is admissible for the
model chosen, since it consists of two first order differential
equations, with a slowly varying drive. Variations in the
drive serve to distort the two-well potential, resulting in
movements between the wells that represent sleep and wake.
The simplified model then serves as a model of sleep-wake
dynamics in its own right—one that is more readily fitted to
data and that can be interpreted from the perspective of me-
chanical systems.

In Sec. II we briefly describe the Phillips-Robinson model
and its relation to the underlying physiology. We then derive
a potential formulation of the model in Sec. III, and make
analytic simplifications to its functional form. The form of
nonconservative forces in the model are is considered and
related to the underlying physiology. Correspondences be-
tween the original model and the simplified quartic potential
are then presented in Sec. IV for normal sleep-wake behav-
ior. The quartic potential model is then fitted to experimen-
tally derived criteria, yielding a set of rigorous constraints on
its parameters in Sec. V. The model is then shown to realis-
tically reproduce recovery from sleep deprivation. Other phe-
nomena, including avenues into chaotic behavior and sto-
chastic resonance are covered in Sec. VI. Finally, the results*ajp@physics.usyd.edu.au
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and future avenues for application of this work are discussed
in Sec. VII.

II. THE PHILLIPS-ROBINSON MODEL

The overall arousal state of the brain is regulated by a
series of brainstem nuclei, collectively termed the ascending
arousal system �AAS�. These nuclei project diffusely to the
cortex and thalamus, and can be classified as monoaminergic
�MA� or acetylcholine-related �ACh� depending on their neu-
romodulatory properties and firing patterns �2�. The AAS is
in turn modulated by circadian and homeostatic drives,
which are relayed via the ventrolateral preoptic area �VLPO�.
The circadian drive originates in the suprachiasmatic nucleus
�SCN�, which generates a self-sustaining oscillation of ap-
proximately 24 h period that is entrained by light. The ho-
meostatic drive is a drive to sleep that increases with time
spent awake, and is believed to be due to the accumulation of
metabolic by-products, such as adenosine �12�.

The Phillips-Robinson model �4� is a neuronal population
model in which average properties are assigned to popula-
tions of neurons. Each population has a mean cell body volt-
age Vj, and mean firing rate Qj, where j=m ,v for the MA
and VLPO groups, respectively. The firing rate is a sigmoidal
function of the voltage

Q�Vj� =
Qmax

1 + exp��� − Vj�/���
, �1�

where Qmax is the maximum possible rate; � is the mean
firing threshold relative to resting and ��� /�3 is its standard
deviation �13�, determining the sigmoid width. Physiological
interactions between the populations are represented by

�mdVm/dt = − Vm + �mvQv + A , �2�

�vdVv/dt = − Vv + �vmQm + D , �3�

where � j is the characteristic neuromodulatory decay time,
�ab represents the input strength to population a from popu-
lation b, D=�vcC+�vhH is the total sleep drive, and A in-
cludes drives of cholinergic and orexinergic origin. The MA
and VLPO groups are mutually inhibitory ��mv ,�vm�0�, as
shown in Fig. 1, giving rise to flip-flop dynamics in which
only one population fires rapidly at a time. These states cor-
respond to wake �MA active, VLPO inactive� and sleep �MA
inactive, VLPO active�.

The circadian drive is considered here to be well en-
trained, and so is approximated by a 24 h periodic sinusoidal
signal

C�t� = c0 + cos���t� , �4�

where �� = �2� /24� h−1. The homeostatic drive H follows:

	dH/dt + H = 
Qm, �5�

with 	 being the characteristic decay time, and 
 weighting
production as a linear function of Qm, since activity of the
MA group is well correlated with arousal. As shown in Fig.
2, the homeostatic drive grows during wake as somnogens
accumulate, and declines during sleep as they are cleared.

The parameter values used in this paper are given in Table I.

III. POTENTIAL FORMULATION

We derive a potential formulation of the Phillips-
Robinson model in Secs. III A and III B. An analytic simpli-
fication to yield a quartic potential is then presented in Sec.
III C, and the point about which the quartic expansion is
performed is constrained in Sec. III D so as to make the
dynamics of the quartic potential model closely match those
of the original model. The nonconservative forces are then
examined in Sec. III E, and related to the underlying physi-
ology.

A. Construction of the potential

The normal dynamics of the model consist of slow varia-
tions within wake or sleep states, and relatively rapid
��10 min� transitions between states, as shown in Fig. 2.
The drive D varies on the timescale of a day, and since

D

ORX
ACh

MA

VLPO

arousal state

FIG. 1. Schematic of the Phillips-Robinson model of the as-
cending arousal system. Connections between neuronal populations
are indicated by arrows, solid for excitatory, and hollow for inhibi-
tory. The wake-active MA and the sleep-active VLPO are mutually
inhibitory. The MA group also receives exitatory input for cholin-
ergic and orexinergic sources �ACh/ORX�. The VLPO is driven by
D=�vcC+�vhH, and arousal state feeds back on to homeostatic
production.

FIG. 2. Normal dynamics of the Phillips-Robinson sleep model,
showing time series of �a� Vv, �b� Vm, �c� H. The dynamics are 24 h
periodic, and consist of long periods of wake �low Vv, high Vm� and
sleep �high Vv, low Vm�, with rapid transitions between states. Sleep
periods are shaded.
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	 ,1 /���m ,�v, there is a natural separation of time scales.
On time scales much shorter than a day, the drive can be
considered slowly varying, and treated as a control param-
eter, reducing the system to the two first order differential
equations �2� and �3�. By combining these into a single sec-
ond order equation, we can treat the system in terms of the
dynamics of a particle in a nonconservative one-dimensional
potential well. We construct this potential in terms of Vm
rather than Vv as it simplifies the dynamics at the right end-
point of the potential, as discussed in Sec. III B below. Dif-
ferentiating Eq. �2� with respect to time yields

�m

d2Vm

dt2
= −

dVm

dt
+

�mvQv

���1 + exp�Vv − �

��
	


dVv

dt
. �6�

Rearranging Eq. �1� then yields

�1 + exp�Vv − �

��
	
−1

=
Qmax − Qv

Qmax
�7�

=
�mvQmax − �mV̇m − Vm + A

�mvQmax
, �8�

upon substituting �vmQv=�mVm+Vm−A from Eq. �2�. Invert-
ing the sigmoid equation �1� then gives an expression for Vv

in terms of Vm and V̇m:

Vv = � − �� ln�Qmax − Qv

Qv
	 �9�

=� − �� ln��mvQmax − �mV̇m − Vm + A

�mV̇m + Vm − A
	 . �10�

Substituting Eqs. �8� and �10� into Eq. �6� then yields the
desired second order equation for x�Vm:

�m�vẍ = − �vẋ + ��mvQmax − �mẋ − x + A�

���vmS�x� + D − S−1� �mẋ + x − A

�mv
	
 �mẋ + x − A

��Qmax�mv
.

�11�

This can be thought of as an equation describing the force
F=mẍ acting on a particle moving in one dimension, where
m=�m�v effectively plays the role of mass �but has different
units�. The corresponding generalized potential is

F�x, ẋ� = − �
x0

x

− �vẋ + ��mvQmax − �mẋ − u + A�

���vmS�u� + D − S−1� �mẋ + u − A

�mv
	


�
�mẋ + u − A

��Qmax�mv
du . �12�

This is a nonconservative potential �11�, since it depends on
the velocity ẋ. The conservative component of the general-
ized potential is

U�x� = F�x,0� = − �
x0

x

��mvQmax − u + A�

���vmS�u� + D − S−1�u − A

�mv
	


�
u − A

��Qmax�mv
du . �13�

The conservative potential is shown in Fig. 3 for a range of
values of D. As D is increased, the system goes from having
one stable equilibrium �one well corresponding to wake�, to
two stable equilibriums and one unstable equilibrium �two

TABLE I. Parameter values for the Phillips-Robinson model.
Constraints on these parameters are discussed in Refs. �4,8�.

Parameter Value Unit

�vc −2.9 mV

�vh 1.0 mV nM−1

	 45 h


 4.4 nM s

c0 4.5 1

Qmax 100 s−1

� 10 mV

�� 3 mV

A 1.3 mV

�vm −2.1 mV s

�mv −1.8 mV s

�m 10 s

�v 10 s

−15 −10 −5 0

−60

−55

−50

−45

−40

x (mV)

U
(x

)
(m

V
2 )

FIG. 3. The conservative potential function U�x� is shown for
different values of the drive D. The solid, dashed, and dotted lines
correspond to D=1.0,1.8,2.7 mV, respectively. Stable steady states
are indicated by filled circles and unstable steady states by unfilled
circles. For D=1.0 mV, there is one stable state, corresponding to
wake. Similarly, for D=2.7 mV, there is one stable state, corre-
sponding to sleep. For D=1.8 mV, there are two stable steady
states, corresponding to wake and sleep, and one unstable steady
state. As explained in Sec. III B, the conservative potential is only
defined for x�A=1.3 mV.
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wells corresponding to wake and sleep�, to having one stable
equilibrium �one well corresponding to sleep�.

B. Right endpoint

The behavior of the system at the right endpoint of the
potential requires further explanation, since the potential be-
comes complex-valued for xA−�mẋ. This region corre-
sponds to unphysical values with Qv�0 as seen by rearrang-
ing Eq. �2� to �vmQv=�mẋ+x−A, and since ẋ�0 whenever
xA−�mẋ, it is not possible for the system to enter this
region.

To obtain a satisfactory physical interpretation of the po-
tential well, the endpoint must be treated carefully. In the
limit �mẋ+x→A− we use L’Hôpital’s rule to find

�v�mẍ → − �vẋ −
�mv

��
VvQv = − �vẋ , �14�

implying that the conservative potential flattens out at the
right endpoint, since there are no velocity independent forces
acting. The implication is therefore that the particle is con-
strained within the allowed region by nonconservative
forces. We note that by constructing our potential in terms of
Vm rather than Vv, the position of this endpoint is indepen-
dent of D, which simplifies the above analysis.

C. Quartic expansion

The exact analytic solution of the integral in Eq. �12� is
cumbersome, since it includes a polylogarithmic term from
integration of the sigmoid term. We are therefore interested
in finding simplifying analytic approximations. During a nor-
mal sleep-wake cycle of the sleep model, we find typical
firing rates of less than about 10 s−1 at all times, in agree-
ment with physiological data. Thus, it is reasonable to as-
sume Qv�Qmax, which simplifies Eq. �10� to

Vv  � + �� ln�Qv/Qmax� = � + �� ln� �mẋ + x − A

Qmax�mv
	 .

�15�

Similarly, assuming Qm�Qmax simplifies Eq. �1� to

Qm�x�  Qmax exp� x − �

��
	 . �16�

Using these approximations in Eq. �13� gives the simplified
form of the conservative potential

U�x� = −
1

��
�

xo

x

�u − A���vmQmax exp�u − �

��
	 + D − �

− �� ln� u − A

Qmax�mv
	
du , �17�

=b + �vmQmax�A + �� − x�exp� x − �

��
	

+
1

2��
�x − A�2�� − D −

��

2
+ �� ln� x − A

�mvQmax
	
 ,

�18�

where b is a constant of integration.
Since U�x� is a two-well potential, as seen in Fig. 3, we

are motivated to derive a quartic approximation. We achieve
this by Taylor expanding about a point x=x0 �the procedure
by which x0 is chosen is described below� to fourth order to
yield the following series:

U = a1�x − x0� + a2�x − x0�2 + a3�x − x0�3 + a4�x − x0�4

+ O��x − x0�5� , �19�

where we have set the zeroth-order term of the potential to
zero without loss of generality, and

a1 =
A − x0

��
�D − � + �vmQmax exp� x0 − �

��
	

− �� ln� x0 − A

�mvQmax
	
 , �20�

a2 =
1

2��2��vmQmax�A − x0 − ���exp� x0 − �

��
	

+ ����� + � − D + �� ln� x0 − A

�mvQmax
�	
 , �21�

a3 =
1

6
��vmQmax�A − x0 − 2���

��3 exp� x0 − �

��
	 −

1

A − x0

 ,

�22�

a4 =
1

24
��vmQmax�A − x0 − 3���

��4 exp� x0 − �

��
	 −

1

�A − x0�2
 .

�23�

The first and second order terms in �x−x0� are found to de-
pend linearly on the drive D, whereas the third and fourth
order terms are independent of D. We can therefore also
represent the potential in the form

U = f�x;x0� + Dg�x;x0� , �24�

where

f�x;x0� = �a1 −
D�A − x0�

��

�x − x0� + �a2 +

D

2��
	�x − x0�2

+ a3�x − x0�3 + a4�x − x0�4 �25�

and

g�x;x0� =
A − x0

��
�x − x0� −

1

2��
�x − x0�2. �26�

The functions f and g are plotted in Fig. 4 for various values
of x0. The function f is a quartic with a positive fourth order

A. J. K. PHILLIPS AND P. A. ROBINSON PHYSICAL REVIEW E 79, 021913 �2009�

021913-4



coefficient, while g is a quadratic with negative second order
coefficient, with both functions having their extremums at
x1 mV �the exact positions depending on x0�. Thus, for
negative values of D, the sum in Eq. �24� results in a single
minimum at x1 mV, corresponding to wake. For large
positive values of D, the sum results in no minimum there,
and instead a minimum at negative x, corresponding to sleep,
as per Fig. 3. For intermediate values of D, the system is
bistable, with both wake and sleep states present.

To accurately represent the potential, it is necessary to
choose the value of x0 appropriately, in particular so as to
have the right curvature, and also to be consistent with be-
havior at the right endpoint discussed in Sec. III B. In Fig. 5
we plot the values of the coefficients of the quartic potential
as a function of the value of x0. We find that if the curvature
of the quartic is to be correct—i.e., to ensure the fourth order
term has a positive coefficient—x0 must satisfy −6.2 mV
�x0�0.2 mV. Furthermore, x0 must be sufficiently close to
the right endpoint, so that the particle does not move into the
unphysical region xA−�mẋ, an issue considered in more
detail in Sec. III D below.

D. Expansion point

The behavior of the simplified model expressed in Eq.
�34� depends sensitively on the value of x0 chosen. Steady
state solutions to Eq. �34� correspond to

4a4�x − x0�3 + 3a3�x − x0�2 + 2a2�x − x0� + a1 = 0, �27�

and since all the coefficients of the cubic are real, the number
of real solutions is given by the sign of C=Q3+R2, with

Q = �8a2a4 − 3a3
2�/�48a4

2� �28�

and

R = �4a2a3a4 − 8a1a4
2 − a3

3��64a4
3� . �29�

For C0, there is one real solution, and for C�0 there
are three real solutions. As shown in Fig. 6, C is a cubic
function of D, and changes to the value of x0 change the
points of intersection with the D axis. For x0�−2.3 mV,
there is only one intersection, implying a single steady state
solution for low values of D, and three steady state solutions
�two stable, one unstable� for high values of D. This would
not be a good representation of the dynamics of the full
model, which undergoes transitions from one steady state
solution �corresponding to wake�, to three �wake, sleep, and
one unstable�, and back to one �corresponding to sleep� as D
is increased. Therefore, we are restricted to −2.3 mV�x0
�0.2 mV.

For x0−2.3 mV, the function C�D� intersects C=0 three
times, passing through four zones as D is increased: �i� one
steady state solution �wake�, �ii� three solutions �wake, sleep,
and an unstable state�, �iii� one solution �sleep�, then �iv�
three solutions �wake, sleep, and an unstable state�. The rea-
son for the existence of the fourth region is the dependence
of a2 on D. For large values of D, the quadratic term in the
quartic potential becomes large and negative, resulting in the
reemergence of a two-well potential. However, since this
fourth region is only accessible at unrealistically high levels
of D, it does not pose a problem when it comes to reproduc-
ing normal model dynamics.

Varying x0 changes the width of the bistable region �i.e.,
region �ii� above�, and this is illustrated in Fig. 7, along with
the width of the bistable zone of the full model. The width is
found to be greater for the simplified model than for the full
model, but we find that it lies within 30% of the full model’s
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FIG. 4. Plots of �a� the drive independent component of the
potential f�x ;x0� and �b� the linear coefficient of the drive-
dependent component of the potential g�x ;x0�. Functions are shown
for x0=0 mV �solid�, −1 mV �dashed�, −2 mV �dotted�, −3 mV
�dash-dotted�.
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FIG. 5. The coefficients of the quartic conservative potential of
Eq. �19�, as functions of x0, setting D=1 mV. �a� a1, �b� a2, �c� a3,
�d� a4.
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FIG. 6. Plot of the function C�D�, which is positive where the
system has one steady state solution and negative where it has three.
The function is shown for x0=−2.4 mV �solid�, −2.0 mV �dashed�,
−1.0 mV �dotted�.
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value for −1.5 mV�x0�−0.3 mV. The behavior of the
quartic potential model is investigated in Sec. IV below for
values of x0 within this range.

E. Friction

The conversion to a mechanical model allows us to rein-
terpret the dynamics in terms of well studied phenomena in
mechanical systems. We now show that the nonconservative
forces in this system are approximately frictional, and show
how they are related to the underlying physiology. Taking the
partial derivative of Eq. �11� with respect to ẋ yields

���m�vẍ�
�ẋ

= − ��m + �v�

+ �v
��mvQv + A − Vm���vmQmax − 2�vẋ − 2x + 2D�

��Qmax�vm
.

�30�

Using Eqs. �2� and �3� this simplifies to

���m�vẍ�
�ẋ

= − ��m + �v� +
�v�mV̇m�Qmax − 2Qm�

��Qmax
, �31�

which can be further simplified under the assumption Qm
�Qmax to

���m�vẍ�
�ẋ

= − ��m + �v� +
�v�mV̇m

��
. �32�

In transitions between the stable states of wake and sleep, the
mean cell body voltage Vm changes by �10 mV in a time of

�2 min, corresponding to V̇m�0.1 mV s−1. The second
term is thus �3 s, whereas �m+�v20 s. The first term will
thus dominate, yielding

���m�vẍ�
�ẋ

 − ��m + �v� . �33�

This implies that the dissipative force is approximately fric-
tional for normal model dynamics. Hence, the overall dy-
namics can be approximated by the simpler form

mẍ = − a1 − 2a2�x − x0� − 3a3�x − x0�2 − 4a4�x − x0�3 − �ẋ ,

�34�

where m=�m�v is the effective mass of the particle and �
=�m+�v is the effective coefficient of friction. This mechani-
cal analog can be interpreted physiologically as dictating the
time taken for the model to move between wake and sleep
states. Furthermore, this perspective reveals that if � is too
small, the potential model exhibits damped oscillations about
the steady state following transitions; i.e., ringing in the sys-
tem.

IV. COMPARISON OF SIMPLIFIED AND FULL MODELS

Having now constrained the range of reasonable values
for x0, we compare the normal dynamics of the simplified
model with those of the full Phillips-Robinson model, ex-
ploring the sensitivity to x0. We find that the normal dynam-
ics of the two models are qualitatively similar across the
whole range −1.5 mV�x0�−0.3 mV, with most time being
spent in either the wake state or the sleep state, and with
rapid transitions between states, as seen in Fig. 8. However,
for lower values of x0, the simplified model does not provide
as good a fit to the waking voltage and firing rate, as shown
in Fig. 9, nor does it fit the times of transition between wake
and sleep as well. The dynamics of the full model are best
fitted by values of x0 near the upper end of the range. The
VLPO firing rates are then not fitted as well, due to x0 being
further from the sleep state, and therefore the quartic expan-
sion is not as good a representation of the potential there.
However, due to the firing rate being a sigmoidal function of
x, this makes no appreciable difference to the MA firing rates
during sleep, and therefore does not affect the sleep-wake
dynamics significantly, which are dictated by the firing rate
of the MA group.
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FIG. 7. �a� Boundaries of the regions �i�–�iv� described in Sec.
III D, as a function of x0. The boundaries of the bistable region �ii�
are illustrated by thick solid lines for the quartic potential, with
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a dotted line. �b� Width of the bistable region �ii� as a function of x0,
for the quartic potential �solid line�, and full model �dashed line�.
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FIG. 8. Dynamics of the model, showing �a� Vm and �b� H. The
quartic potential dynamics are shown for x0=−0.3 mV �solid�,
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�dotted�.
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V. MODEL FITTING

We now use the quartic potential as a model of sleep-
wake dynamics in its own right by constraining its param-
eters directly, using experimentally derived criteria, rather
than trying to match it to the model it was derived from. This
is indeed a more appropriate way of constraining the model
to reproduce dynamics that simulate actual data. In this sec-
tion, we use the form

�v�mẍ = k3�x − x0�3 + k2�x − x0�2 + k1�x − x0� + k0 + kdD

− ��v + �m�ẋ , �35�

where k3, k2, k1, k0, and kd are constants to be constrained,
and we use x0=−0.3 mV based on the results in Sec. IV. To
further simplify the model, we have dropped the drive-
dependent linear term D�x−x0�, since the lower order term
kdD is already sufficient to generate normal dynamics.

We explore parameter space to find any regions that sat-
isfy the following physiologically based criteria: �i� normal
sleep duration in the range 7 to 10 h, �ii� hysteresis loop
crossing time in the range 1 to 3 h as per previous work �4�,
�iii� Qm in the range 3 to 5.5 s−1 during wake, and �iv� Qm in
the range 0 to 0.5 s−1 during sleep, to match physiologically
realistic firing rates �4,8�. The parameters that satisfy all of
these criteria are found to lie in the ranges k3
�−0.006 mV−2, k2�0 mV−1, k1�−0.15, k00.1 mV, kd
�−0.1. We choose a nominal set of parameters from near
the center of the acceptable region k3=−0.03 mV−2, k2
=−0.4 mV−1, k1=−1.2, k0=0.7 mV, kd=−0.2, and use x0
=−0.3 mV, consistent with Sec. IV. The model dynamics for
these parameter values are shown in Fig. 10, with the dy-
namics satisfying all constraints. The model output also
semiquantitatively matches the original model, despite being
constrained separately.

As an additional test of the dynamics of the simplified
quartic potential model, we now apply sleep deprivation. To
model sleep deprivation, we hold the model in the waking
state by setting ẍ= ẋ=0 in the simplified model. This simu-
lates the effect of a wake-promoting drive that is just suffi-
cient to maintain the model in wake. As initial values, we set
x=0.5 mV, corresponding to a typical waking value, and H
=13.2 nM, corresponding to the normal level of H at sleep

onset. As seen in Fig. 11, the homeostatic drive continuously
rises during the enforced waking state, its dynamics still be-
ing dictated by Eq. �5�. By releasing the enforced waking
conditions, the models then undergo recovery sleep, return-
ing to normal dynamics over the course of two to three
nights, and sleeping an extra 6.4 h in total above baseline
levels. This time course of recovery and amount of recovery
sleep is consistent with experimental studies, and with stud-
ies of sleep deprivation using the full Phillips-Robinson
model �8�. Furthermore, even after a long deprivation such as
this, the simplified model does not enter the unphysical re-
gion �iv� discussed in Sec. III D above.

VI. OTHER PHENOMENA

As a brief illustration of the potential fruitfulness of this
approach, we now relate the behavior of the model to some
phenomena that have been deeply studied in other applica-
tions, starting with nonlinear behavior in Sec. VI A, and then
stochastic resonance in Sec. VI B.

A. Nonlinear dynamics

The human sleep cycle is typically well entrained to the
24 h light cycle. However, with ageing, the strength of the
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FIG. 9. Dynamics of the model, showing �a� Qm and �b� Qv. The
quartic potential dynamics are shown for x0=−0.3 mV �solid�,
−0.9 mV �dashed�, −1.5 mV �dash-dotted�, and for the full model
�dotted�.
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FIG. 10. Dynamics of the quartic model with nominal parameter
values, showing �a� Vm and �b� H.
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FIG. 11. Simulating a 120 h sleep deprivation protocol followed
by recovery �solid line� using the simplified quartic model, as com-
pared to the normal model output �dashed line�. Plots are shown for
�a� Vm and �b� H.
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circadian signal relative to the homoestatic drive becomes
reduced, due in part to decay of the SCN �14�, with a 75%
volume loss associated with Alzheimer’s disease �15�. This
can result in highly fragmented sleep. As an initial demon-
stration of nonlinear dynamics, we model this by setting
�vc=−0.09 mV, and increasing c0 to 70 so as to maintain the
wake/sleep balance. This disproportionate decrease in �vc
can be justified by the fact that loss of SCN volume can also
lead to desynchronization of the oscillator �16�. In this case,
we find that the model enters into a 120 h cycle, as shown in
Fig. 12, with other periodicities also possible, indicating a
possible route into chaotic behavior. Similar dynamics result
from significantly increasing �vh while keeping �vc constant,
and again adjusting c0 so as to maintain the sleep/wake bal-
ance. These results are also achievable in the full model �not
shown here�, and clearly warrant a systematic investigation
of nonlinear dynamics in the model, including bifurcations,
period doubling, and a full search of the parameter space for
chaotic dynamics.

B. Stochastic resonance

Stochastic resonance occurs in two-well systems when
there is a periodic signal present that is of insufficient ampli-
tude to cause state transitions alone, but with the addition of
noise, transitions occur in phase with the applied signal �17�.
During normal waking, ultradian variations in alertness are
observed �18�, which are typically insufficient to cause tran-
sitions into sleep. Such influences may be sufficient to in-
duce sleep by stochastic resonance in the presence of noise
of a suitable amplitude, and this may help to account for
phenomena such as daytime napping. Here, we model an
ultradian signal by adding a 90 min periodic signal U�t�
=uA cos��t� to the right-hand side of Eq. �35�, with �
=2� / �1.5� h−1 and uA=0.5 mV. We fix D=1 mV to investi-
gate the effects of this ultradian signal while the model is in
a bistable �two-well� state. The behavior of the system for
different amplitudes of Gaussian noise is shown in Fig. 13,
by also adding the term nA��t� to the right-hand side of Eq.
�35�, where values of ��t� are drawn randomly from a nor-
mal distribution of mean 0 and standard deviation 1, using a
timestep of 6 s. For low amplitude noise, the system makes
no transitions from wake into sleep. Increasing the amplitude

of the noise, the system starts to transition between wake and
sleep on an approximately 90 min period, displaying a sto-
chastic resonance. This indicates how even subthreshold
stimuli can dictate napping patterns. When the amplitude is
increased further, the noise drowns out the ultradian signal,
and frequent transitions between states are observed, charac-
teristic of narcolepsy.

VII. DISCUSSION

We have constructed a simplified quartic potential model
of the human sleep-wake cycle, by using the potential for-
mulation of a physiologically based model as a starting
point. The simplified model was demonstrated to be semi-
quantitatively consistent with the original model for both
normal sleep-wake dynamics and recovery from sleep depri-
vation, and equally importantly, it is readily fitted to data in
its own right. The reduced number of parameters in the sim-
plified model allows for more straightforward and robust fit-
ting and simpler analysis. Furthermore, we gain new insights
into the dynamics of the system, in terms of well studied
phenomena in mechanical systems, such as friction, stochas-
tic resonance, and nonlinear dynamics. This model does not
supersede the physiologically based models, but rather
serves a different purpose. This model may thus help able to
provide new insights into the dynamics of phenomena that
are not yet fully understood at the physiological level, such
as the ultradian rhythm.

By formulating the original physiologically based model
as a simplified model that simulates the motion of a particle
in a one dimensional potential well, we were able to draw on
mechanical analogies, and thereby analyze the system from a
fresh perspective. The relation described in Sec. III E be-
tween friction in the model and the parameters �m and �v,
sheds new light on how these neurotransmitter time con-
stants influence the dynamics. If the value of �=�m+�v is
made lower, then the system exhibits underdamped oscilla-
tions at the transition between wake and sleep. Furthermore,
the model is shown to produce higher order cycles when the
strength of the circadian drive is reduced relative to the ho-
meostatic drive, which may lead into chaotic behavior. Such
phenomena could foreseeably relate to actual pathologies, in
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FIG. 12. Model dynamics with �vc=−0.09 mV and c0=70, with
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which case the model may help us to better understand and
interrelate their dynamics.

The quartic two-well potential has been studied in a wide
variety of applications �19,20�, allowing us to make direct
relations to phenomena studied in other contexts, thereby
gaining a greater insight into the human sleep-wake cycle.
For example, the phenomenon of stochastic resonance, in
which noise of a suitable amplitude is able to resonantly
drive a system between two wells, may be directly related to
daytime napping behavior on the time scale of the ultradian
rhythm. This may also account for the so-called “forbidden
zone,” a period of time before the normal sleep onset time
during which it is particularly difficult to fall asleep �21�. If
ultradian excitation of the MA group is minimal at the time
of sleep onset, then we would expect it to be difficult to
initiate sleep in the preceding hour when the ultradian exci-
tation would be near its peak. Furthermore, the erratic tran-
sitioning seen when the noise amplitude is further increased
may relate to narcolepsy. It has been previously shown that
decreasing the effect of orexin results in a reduced barrier
between wake and sleep states �4�, which is equivalent to
increasing the noise amplitude with a fixed barrier height.
This method therefore also provides a means of estimating
the noise amplitude in the physiological system based on the

frequency of transitions. In future, the model might also be
applied to understanding the statistics of noise-induced sleep/
wake transitions, which have been studied experimentally
�22�.

The simplified quartic model was demonstrated in Sec. V
to be readily fitted to data due to its small number of param-
eters and simple analytic form. In future, such dynamic mod-
els may be implemented for fitting to data on an individual
basis with greater robustness than models with many free
parameters, or previous phenomenological models that have
not been directly related to the underlying physiology �23�.
Additionally, this model is easily extendable, and provides a
platform for future studies of phenomena for which the dy-
namics are well studied but the underlying physiology is not
yet fully understood, such as the ultradian rhythm between
REM and NREM sleep. By studying such phenomena in a
more compact model of the dynamics, it may enable us to
better constrain and infer the underlying physiological struc-
tures.
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